Analysis Of Exact Solution Of Linear Equation Systems Over Rational Numbers By Parallel p-adic Arithmetic
نویسندگان
چکیده
We study and investigate the p-adic arithmetic along with analysis of exact solution of linear equation systems over rational numbers. Initially we study the basic concepts involving the p-adic numbers and why they form a better representation. After that we describe a parallel implementation of an algorithm for solving systems of linear equations over the field of rational number based on the Gaussian elimination.The rationals are represented ny truncated p-adic expansion. The approach leads to error free computations directly over the rationals without converting the system to an equivalent one over integers. The parallelization is based on multiple homomorphic image technique and the result is recovered by parallel version of Chinese Remainder Algorithm.
منابع مشابه
Exact Solution of Linear Systems over Rational Numbers by Parallel p-adic Arithmetic
We describe a parallel implementation of an algorithm for solving systems of linear equations over the eld of rational numbers based on Gaussian elimination. The rationals are represented by truncated p-adic expansion. This approach permits us to do error free computations directly over the rationals without converting the system to an equivalent one over the integers. The parallelization is ba...
متن کاملTerza Universit a Degli Studi Di Roma P-adic Arithmetic and Parallel Symbolic Computation: an Implementation for Solving Linear Systems
In this work we describe the use of truncated p-adic expansion for handling rational numbers by parallel algorithms for symbolic computation. As a case study we propose a parallel implementation for solving linear systems over the rationals. The parallelization is based on a multiple homomorphic image technique and the result is recovered by a parallel version of the Chinese remainder algorithm...
متن کاملp-adic Arithmetic and Parallel Symbolic Computation: An Implementation for Solving Linear Systems Over Rationals
In this work we describe the use of truncated p adic expansion for handling rational numbers by parallel algorithms for symbolic computation As a case study we propose a parallel implementation for solving linear systems over the rationals The parallelization is based on a multiple homomorphic image technique and the result is recovered by a parallel version of the Chinese remainder algorithm U...
متن کاملp-adic Shearlets
The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.
متن کاملSolving Univariate P-adic Constraints
We describe an algorithm for solving systems of univariate p-adic constraints. In analogy with univariate real constraints, we formalize univariate p-adic constraints as univariate polynomial equations and order comparisons between p-adic values of univariate polynomials. Systems of constraints are arbitrary boolean combinations of such constraints. Our method combines techniques of Presburger ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003